Consider a Gamma-Poisson Bayesian model for rate parameter \(\lambda\) with a Gamma(shape, rate) prior on \(\lambda\) and a Poisson likelihood for the data. Given information on the prior (shape and rate) and data (the sample size n and sum_y), this function summarizes the mean, mode, and variance of the prior and posterior Gamma models of \(\lambda\).
summarize_gamma_poisson(shape, rate, sum_y = NULL, n = NULL)data frame
summarize_gamma_poisson(shape = 3, rate = 4, sum_y = 7, n = 12)
#> model shape rate mean mode var sd
#> 1 prior 3 4 0.750 0.5000 0.1875000 0.4330127
#> 2 posterior 10 16 0.625 0.5625 0.0390625 0.1976424